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A&STFACT

The transient wean-square response of a nonlinear single-degree-

of freedom mechanical system to nonstationary random excitation char-

acterized by the product of an envelope function and a stationary

Gaussian random process is determined by the quivaIlent linarizstion

technique. A unit step envelope function is considered in conjunction

with both correlated and white noise with zero man.

It has b-en showi that for white noise mdulated by a unit step

function, the transient mean-square response never exceeds the stationary

response. However, the man-square response to correlated noise

modulated by a unit step function may exceed its stationary value.

The analysis is extended to the multi-degree-of-freedom nonlinear

systew for the case of rmtually uncorrelated noise.



CH AP T &R I

INTKMJCTION

The transient rtan-sqvare response of a linear sinle-uigrte-of

fVWAsOM mechanical SYS#AM to Certain types Of nonstatlnary r&and

excitation has been studied by several authors (1. 2, 3, 4]. The non-

stationary input was taken in the foir of a product of a Wl1-defined

envelope function, A(t) and a stationary Gavssiam noise witb zero man,

n(t).

T. K. Caw~hey and H. J. Stmf [1] have examined the case in mic*

Vt;e envelope fwcV-., A(t) was a unit step function and n(-, ) was assiud

to be either white noise or b)roa*J-band nois.e whose pwr spectral don-

sity has no sharp peaks. Results of their analysis were applied to the

determirstion of the structural re,.ponse to earthquake ground moion.

V. V. B,- )iin (2) hka 6etetr1ned the mean-square response of a linear

structure .Weresented by a second order differential equation when et

structure is subject to earthquake P.xci&;ation- In his analys-'-;. he

,,miosidered the ground acceleratici to 1w, characterized by the product

of an exponentially decaying haw=onic correlation function And an

envelope~ function, A(t) - ACe-ct.

In a recent paper [33, R. L. Barnosk! and J. R. Maurer have formit-

latel the tine varying '-,,-square response of a li near single-degree-
of-freedom system in terms ofr the system firequency response function

and the generalized spectral denity functioit of the input excitation.

They consiC.red the envelope funct1m to h~e either the unit step function



(2]

or a rectaigu~ar step fumction. L. L. bciaftlli ad C. KNO [4] NOW

recently obtained an apprxiiMt* eaprOSSION fvr tht mm#-squar respVs

to excitatior ckarat~rind by a 9mnral eavelop function subject only

to the restriction 1Ihat the envelop function Is slowly varying. Their

wt. also gave an estimated maxin value of the man-squsre response.

In all the above studies, the systaw treated were liner.

To date, the problem of response of a nonlinear sysimt e o-

stationary random excitation has bee,, instiened in only one place.

Thee, R. H. Toland, C. Y. Yang, and C. Hsu [5) emlyed a , u i -vlk

mmial to determlae, system response to stationary Gaussian white moiso.

The extension to the nonstationary cast was discussed, but mot carried

through to cmletion. There are may syste whoe mcions am'

characterized by riom ie-mr differential equations, particularly when

the motioas are large. It is Ot purpose of this stA* to present an

approximate solution to the transient man-square response of a simple

%*M! .,Ar system to a sonstationary rando excitation. Only syste

with geomtric nonlinearities (rather than materials nonliearities)

involved are considered and tte nonlinear difftrential equation is

lineierized by an equivalent linearization twd:Wque. All computation

for Gbtaining the man-square response of the system Is straightforward.

Hwver, it is not generally possible to obain a closed form solution

of the men-square respone and the equation has to be solved numrically.

First a simgla-dograi-of-freedon system is treated in Chapter 11 ad than

a multid~gree-of f-r~Ac system is dscussed for various special cases.

Results of :he present investigutimu could, as an approximation,

be applied to muponse deteriqination of thin elastic plates and shells
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(regrded as single degree of freedom systoms for any gim noda)

whm these system are subject to pressure fields that excite large

anlitude oscillations. Jet engine sound pressures would be one

exaple of such a pressure field.

w
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CHAPTER II

A SINGLE-DEGREE-OF-FREEDOM NONLINEAR SYSTEM

2.1 Statement of the Problem

Consider a lightly damped single-degree-of-freedom mechanical

system subjected to a random excitation and governed by the equation

Y(t) + 2cr1n(t) + 2n(y(t) + g(y)) - f(t) (2-1)

where

- fraction of critical damping

wn = natural frequency of the corresponding linear system

N 2k+1
g(Y) " 7.Y ly _> 0 (2-2)

k-1

The nonstationary random excitation f(t) is expressed by

f(t) - A(t)n(t) (2-3)

where A(t) is a well-defined envelope function and n(t) is a Gaussian

stationary random process with zero mean and autocorrelation function

R n().

We are to determine the mean-square response E[y2 (i)] to an

input f(t) when the envelope functions are a unit step function and

exponential function, respectively, i.e.,

A(t) - u(t) (2-4)

M
A(t) - £ Alexp(-clt)u(t) (2-5)

1-i
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and n(t) has the following autocorrelation functions

Rn(T) - 2wko6(T) (2-6)

Rn(T) = Koexp(-ajTI)cosOT (2-7)

where u(t) is a unit step function and 6(T) is the Dirac delta function.

Note that if we let all A1 be zero except for A1 - 1 and c1 z O, Eq. (2-5)

reduces to Eq. (2-4).

2.2 Response Formulation

Althojh various methods can be applied to determine the response

of nonlinear systems, the equivalent linearization technique will be

used here. This technique was developed by Krylov and Bogoliuvov

for the treatment of nonlinear systems under deterministic excitations,

and then R. C. Booton [6] and T. K. Caughey [7] applied this technique

to problems of random vibrations.

We assume that an approximate solution to Eq. (2-1) can be obtained

from the linearized equation

+ 20 + 2 f(2-8)

where 8e is the equivalent linear damping coefficient and we is the

equivalent linear stiffness. The error "e" due to linearization is

given by the difference betweeii Eqs, (2-1) and (2-8), i.e.,
e 0 2z n  e)+( 2 2 ( 2

2()Y -e 61)y + g(y)wn (2-9)

2
The variables e and we are selected so as to make the mean-square

error E[e 2 ] a minimum. The minimization of Ere2 ] require that:

it; "'...
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-Ee 2J 0o (2-10)
ase

Substitution of Eq. (2-9) into Eqs. (2-10) and (2-11) gives

4 (-nYE 4(wn ye)E[y0

4E g(y)w 2  0(2-12)
na

We 2 1)[y - 2 2 2 ~
2 -4(wn-fe)E[yY - 2(wn wOe)E(y 2 ]

2.0
- 2E[yg(y)w = 0 (2-13)

Solving for 0e and w2 from Eqs. (2-12) and (2-13), we have

2e 2 n + r2 Ey 2 ]Eg(Y] E E (
20E=y 2E 2  - (Ey]) (2-14)

2 =2 2Ew 21Enyg(y)] - E[yy]EtLyflr..
we n on E[y2]E[ 2] _ (Ey y]) (2-15)

From Eqs. (2-12) and (2-13),

2 22 -8E2j>0 (2-16)

e

a 2Ere2] - 2E[Vy2 P 0 (2-17)l2 2we
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L 2Ero2 ]2Ee 2 = 4E[y;] 
(2-18)

e we)

and

a ( 16{E[y2)E[a2 a- (E[y.])2}

e 'e e 4e

= 16det(K) (2-19)

where det(K) is the determinant df the matrix of covariances. Since

the upper bound for the nonstationary cross-covariance E[yy] is given

by the inequality (8),

(Eyj])2 < E[y2JEUy2J (2-20)

then,

a 2 E[e2] eE[e , ['E[e 12
ao; 'e) liae (we)1J

From Eqs. (2-16), (2-17), and (2-21), it can be seen that the conditions

(2-14) and (2-15) truly give a minimum E[e2].

In order to express the right hand side of Eqs. (2-14) and (2-15)

in terms of E[y2], Ely2] and E[y], it is necessary to know the prob-

J ability density function p(y,y). In general, however, p(y,j) is not

known. If the input is Gaussian and the nonlinearities of the system

are small, then the response of the linearized equation (2-8) is also

Gaussian. Therefore, the assumption is made that the probability densit)

function p(y,j) is Gaussian with covariances to be determined.



Before constructing the probability density function, the

ensemble average of y and i is calculated by use of Duhamel's integral.

Assuming that the system is at rest initially, we have the solution of

Eq. (2-8) to be
t

y(t) -J h(t-T)f(r)dr (2-22)
0

Where h(t) is the impulse response of the system defined by

-set

h(t) - e (sinwdt)u(t) (2-23)
wd

and
2 2 S2 (2-24)

Od e' ' e

The ensemble average of y is obtained by taking the enumble average

of Eq. (2-22).

E[y]u h(t-T)E[f(r)]dr (2-25)

Since we assumed that Ef(t)] 0 , then

E~y] - o (2-26)

Similarly, the enseble average of i' is obtained by

E[ i - a- h(t-)E[f(T)]dT = 0 (2-27)

Because of Eqs. (2-26) and (2-27), the assumed Gaussian probability

desity function p(y,*) takes the form:
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_____- 1 exp(-ay 2+ 2byj ci2) (2-20)

where

a - EI&2 1(2det(K))

b - E[yjj/(2det(K))

c = E[y2J/(2det(K)) (2-29)

det(K) -E~y 2J]E~j) - (E~yijl)'

Expression feor E~yg(y)J and E[jg(y)] are obtained in the Appendix and

cre shown to be (9],

E~yg(y)] J yV(y)p(y.j)dydj
r, "k - 2-k(-- ]k (2-30)

kai ki

E~yg(y)] J y(Y)P(7.i)**
.= -40

a E Uk '~ 1i 4 ~23)k ELyil(231

Sub~stituting Eqs. (2-3D) and (2-31) into Eqs. (2-14) aOd (2-15). w haw

20* 2iwm (2-32)

I- 2z...
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It is interesting to observe that the above equivalent linear dvi ig

2B and stiffness 2w are identical to those found for a statonery

process in which case E[y] is &qual to xero and Eqs. (2-14) and (2-15)

are simplified as

20a, - 2%n + oil -

(2-34)
2 2 + 2 E ,],

'O a'n +'n-E [Y2]

If instead the nonlinearity is involved only in the velocity term such

as 9(y), we can easily show that the equivalent linear damping srd stiff-

ness for a nonstationary process are the same as those for a stltoury

process.

The mn-square response Ely2] at avw instant of tine t, is

obtained from the computation of the expected value of (y(t))2 over

the ensei le of the response. From Eq. (2-22),

Ely2J " J J0h(t 'T)h(t )Ef(T) f() drd4 (2-35)

Since A(t) is well-defined function and n(t) is stationary,

E[f(r)f(T)] - A(r)A(T)E[n(T)n(r)]

A(T)A(T)k,(T-T) (2-36)

where %n(T;) is the aut)A(rYlat1 function of n(t). Substifttion

of Eqs. (2-23), (2-32) and (2-36) into Eq. (2-35) leadi to
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E[Y 2]

Ety1G ft
*~ 0

Fro. Eqs. (2-24), (2-3t)o and (2-33), wd becomes

~2 a2 . m~±JLE yl])k., 1 - ?(2-38)
od d kal O -- k

Vith R T) defined by Eqs. (2-4) or (2-7), anQ A(t) defined by Eqs. (2-4)

or (Z-5)a Eqs. (2-37) and (2-38) bemm-) simltaneous nonlinear algebraic

equaitons for E(y2 .

Alternatily, Eq. (2-37) can be expressed in term of the pOWr

spectral density +(w) of n(t). Since the autocormlaton function

V -)is given by

ft~(T'l))J*)cos T-T~)&O (2-39)
"0
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Then, substituting Eq. (2-39) into Eq. (2-37) and changing the order

of integration, we have

E[y 2  exp(-n(2t-TTJ)sfnvd(t-T)
wd
0 0 0

SsIWd(t-T)A(r)A(;)cssw(T-)IdTd (2-40)

2.3 Response to Smed White Noise

If the input is assurd to be white noise, then stbsttution of

Eq. (2-6) into Eq. (2-37) lads to

2- TK *p (t-d)A2(r)Sln2wd(t-T)dT (2-41)

2.3.1 (bit SVp EnvelOye Function

Lot us first consider the case in which the envolope function is

defined by Eq. (2-4). By performing the integration of Eq. (2-41), we

obtain

Ely21 I exp{'Zrmlt'Tl )Sjn2dltT)*

0

20 -1- '(1 2 22 Sin dt

IW..'n+ wd)a

+ S sin2odt)] (2-42)
*d
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Employing Eq. (2-38), Eq. (2-42) becomes a nonlinear algebraic

equation for E[y 23 since 2is a function of E[y2J in Eq. (2-38). This

type of eqimtion generally has more than one solution. !IOwever, from

physical considerations the etsired solution will be that one close tW

the solutioni of the correspondi-ng linear system because ,nly a weakly

nonlireffr system is bein~g considered. Since the general procedure for

solving the nonlinear algebraic equation is not available, we shall

use Newtons method of tangents to obtain an approximate s~olution at

instantaneous values of tine, t, and then iterate. The solution by

Newton's method sow~imes does not converge if a poor initial value is

c:osen. However, since the man-square response of the linear system
2 2

ELY0]I is assiued to be close to that of the nonlinear system, E[y;] if.
suitable for use as the initial trial solujtion for an iteration sche.

Throughout the present stu.4y, this iteration scheme together with

Newto's method is used for obtaining art approximate solution.

As a numrical example, let us consider the, simplest case, i~e.,

g (y) - iy 3  (2-43)

For various values of Vi an~d damping coefficient IEL2 is

computed and the normalized plots are shown in Figurn' I through 3.

The normalization factor is determined by the stationary mean-square

response of linear system
qv2 -wK /4iw3 (2-43)

iiThe parameter u~ is chosen in such a manner that given Vi the stationary

inan-sqcare resoonse reaches 40 percent., 60 percent and OD percent of
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Efy2]s. If the damping is small, Eq. (2-42) can be approxlmatei by

I~ 0 1y e
E[y 2] ra E[y:] 21 1 - j a e 1n2-45)

from whtih the following approximate solution is obtained.

Tn what follows, let us show that the transient mean-square

response for both linear and nonlinear systems does not exceed the

stationary mean-square response to white noise. That is,

E[y~J 2 2

(2-47)

E~y23s > Ely 2]

From Eq. (2-42), we havte

E2] H K 1-e 2Zn t[ 1+(Mfl)2 + (-..A) + ( )
EryJ= '*d '1d "d

x sin(2wdt - e)JJ (2-48)

where
0 -tan-l(W )

Since
(1+ (.)2 [(%n2 ()41L R) > --- 7) + (-d ":n

wd Wd 'd
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r'. anti

-1 < sin(2odt-e) _< 1

then

I -e -Wn t,+(---) 2 + sin(2adt-)] 1 (2-49)

', equality holds for t m

Therefore,

E CY2] _ wKo/4 3(1+3uE[y 2]) (2-50)

Solving for CEy2], it 's concluded that

Ery2] < I{[1 + 12( w )]i -1 - E[y2Js  140

For linear systems, substitution of u 0 into Eq. (2-50) leads to the

first equation of (2-47).

2.3.2 Expential Envelope Function

if a white noise is modulated by the expomtial envelope function

described by Eq. (2-5), then Eq. (2-41) becomes

y2]  exp[22r~n(t")1sin2Wd(t-T)

11 d 0
Mq M

x E Z AAjexp[-(ci+c)Tl]r (2-51)

M NKA -2cwnt 2A2

3 E - [e 2X -(I+ 11 ,2
i-i Jai 0 j(k , d2 _z _ "

:~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~I _"'Tr r.... . .. . ....... . ... .. . . ..
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+ ?& slQ dt)] (2o51)td cont'd

%wre
Aij - r.W -I(ci + cj) (2-52)

Consider the special case in %,ich the envelope fumction and

nonlinear tem g(y) are te following:

A(t) - Ae-ct

(2-53)
S(Y) _WA

Then, Eq. (2-51) is simplified to the form

2 K0112 e 2(-6' 2(r6)2 22_2
EryvJ - z ar-- 2 2 ~ l ~f sin (x-C

4u 6 -2e.6+XZ x -6

+ "(.-t sin2(x2"C21)'1  (2-54)

where

x2 - I + 3dE[y 2

T ant (2-55)

6 - c/%

Equation (2-5#) ws solved by a mmerical iteration method described

in Chapter 2.3.1, and normalized plots are show in Figure 4 and S.

The normalization factor is chosen in this case to be

2% KA 2/43 (2-S6)

which is the stationary memn-s"aare response for the cast of c fl

andP - O. Tw cases 6 a 2 and 6 arill ustrated in those figures



[171

ant the results shu that for large 6, i.e., rapidly decreasing

wplitude of the input, the effect of the parameter j is insignificant.

If ¢, 6 4 1, Eq. (2-54) can be expressed approximately by

2 2 -e26-"2 )

E[y 2] w) +2

Solving for E(y2 ],

2E [1 I 12 (e2 - -1 (2-57)

is obtained.

2.4 Response to Shaped Correlated Noise

If the input nciise is assumed to be correlated as the damped

harmnic form of Eq. (2-7), then Eq. (2-37) becomes

Ery21 K O-2Cwt 0 91

0

sind(t-T)sinWd(t-T)cosS(T-)dTd; (2-58)

2,4.1 Unit Step Envelope Function

Substituting Eq. (2-4) into Eq, (2-58), we find that Eq. (2-58)

takes the form

-2wnt 

,t

E[y 2 'U0 2" - expLlCI0 Tjsin~d(t-r) I exP[l(rn+)T]

i °" t
x Sudl(t-)CWB('r-T)dT 1O + xD[On+a);]sldlt-;)



St

X { J C(W&.Q)TSiflWd(t-T)COSB(T-T)dT } dT (2-59)

T

The double integral in Eq. (2-59) may be evaluated after some tedious

algebra to give,

ED-2] K-2o 8 Q t )Tt (t) (2-60)

Cwd

where

Q1 - A~t (R I"R2)Pl/2R1R2

2-Pl t "  2 (2-61)
Q2 " • t(n 1R2+ 2R1)/2R1R2

P1 (R!+R 2 ) P2 (R3+R4 )

Q1R4 3 2R3  fl1 Rj2I 12

QS a 2

Q6 a-

P2
7 

4

Q8 2

g2W4



=l [ P2eP2 t(R4 -R3)+R4(P2cosl~t-fls'flt) +

R3(Sl2sin(Q2t-P2cosf22t) ]/2R2 R4

T2 ' eP2t(sllR4+"2R 3)-R4(P2sr 4I i~cosQ It)-

R3( p2sinsl2t+s12coS'1 2t) ]/2R 3R 4

T 3 ' (1-eP3t)/2P3 + P3 eP3t/2R5 -

P3COS2w d t-2wd sin2wdt)/2R,

T4 (2wde PtP3s'n2wdt2wdcos2wdt)/2R5

T5 a -ep~t (psia +0 casil t)/2R +P1/2R1 -

(2s~ 2-QsnwtP

eP t (pls~niQt~n Cos 1t)/2R2

Efli R2Sil 2w dt-pl (R2cos2wdt-Rl) J/2R1R2 otd



[2n]

T8  eP1 t (pxs ir2t+lcosn2t)/2R -n2/2R2 -

(Pl cos2wdt+lcos2wdt)/ 2R, -

e.°lt(Plsin' 2 t- 2coswdt)2R2

Pl = ;n°

P2 = 'On'

P3  Pl + P2

R 2 +12
1 p1  1

2 2

3 p2 + 71

R 2~ + 2 (2-61)
4 2  2 cont'd

2 2
R5 - (pl+P2 ) +4

From Eqs. (2-60) and (2-61) it is seen that the mean-square

response depends uron an interrelationship which involves the system

damptng c, the corresponding linear system natural circular frequency

Wn' the decaying constant a and the frequency 0 of the correlation functio,

Determining the solution Ery 2] requires much algebra even for the simplest

case of g(y) =my
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hen the input is white noise, only the value of damping of the

system affects how quickly stationarity is attained as seen in

Section 2.4. However, for a correlated noise input, the time 'equired

for the resoonse to reach a stationary vale is influenced not only

by the system damping coefficient c but also by the decay constant a

of the input noise. Normlized plots for g(y) 5*y 3 are shown in

Fiqures 6 through 8 for various value of a with fixed 8. The normali-

zation factor was chosen as the stationary mean-square response E[yo]s

of the linear sys" which can be obtained by letting t - and v = 0

in Eq. (2-60). Instead of finding the stationary mean-square value

from Eq. (2-60), we obtain it from

E~y~j 2 ()d (2-62)
0 s '+(24aw)'

where *(w) is the one-sided power spectral density of n(t):

Ko 1W + 1 ] (2-63),(w) = f +(w+o)r- 0 2+(0 10-63

By contour integration, E[y23s becomes

K A2(-)- 2
i~~~ 0(~x  ,AI1 )'Bz 2(1-z;2Cz

4C + o (2-64)

(' (C2+D2)
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where

A1  ,, .2)*

B1 - 2c[(lc2)'"'I

A2 X Q
2 4+$2+l2c2 20' (lz2 )j

B2 - 2ffl(1_ 2 )1-01]

C ,, 1+(A'2-_ft2)2-4a'21'2+2(0 '2_,2) (2C;2_1)

D - 4a'5B(1-2c2+a,2 2) (2-65)

t1' i/w

This was done for checking purposes. Since the normalized mean-square

value must asymptotically approach unity for large t, we can check the

results of Eq. (2-60) if we let V-0. Results show that as a decreases,

i.e., the power spectral density has a sharp peak at some frequency,

then the transient response tends to exceed the stationary value.

Another interesting result is that the nonlinear response becomes

qreater than the corresponding linear response under certain conditions

even if the system has hardening spring-type nonlinearity. One such

example is shown in Figure 12.

2.4.2 Eponential Envelope Function

For the exponential envelope function expressed by Eq. (2-5),

Eq. (2-58) is of the fore

t Pt

iii
:~ e2cw nt

21 o d
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E E eXp[((W-C 1 )T+(W-Cj)T-aI -TI~dTdTC

*K e2Uwnt F m t

2 . i~ e( 4wct-cj)TlsinIwd(t-r)x

I exp[(1wfla-ci)TJSiflWd(t-T)COS(T-T)dT }dT +

iij
0 (2-66)

I ~ ia,--c) SifWd(tT)cosO(trT)dT (in

After some tedious algebra, we have

EC2 o2Z Z A iAi E ik ij (2-57)
(a'd i-I k- I Qj~

whee ~jkand Tik are defined in Eq. (2-61). However, P1 1 P2 1 and

3 are reolaced by the follo'ini.

P3J Pj+P~j
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Also all other Q1,....Q 8, T V*...Teo R1,....R5 are denoted by lj%.

Sij Equations (2-67) and (2-38) my be solved simultaneously for

E~y 21.

As a numrical example, the simplest case M-1 in Eq. (2-5), that

is, A(t)-e-ct is shown. In Figures 9 through 11, the normlized mean-

square value is plotted for various value of a. Here, a, 0 and

normlizationi factor C0 are the sam as those used in the previous

Chapter 2.4.1. The exponential decay constant c of the envelope function

I s taken as c
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CHAPTER III

fUTIDAREE-OF-FREEOM NONLINEAR SYSTEM

3.1 Statemlent of the Problem

Now, cowi~der the H-degree-of-freedm system governed by

'2
Yi2iwj ujI r =JY fl(t) i-,, N(3-1)

Or, this may be written as

• + fi(t) (3-2)

where V is the total potential energy per unit mass expressed by
2 2 N N 2222 (

V- Vk 4 r OkwkYkYj  (3-3)
k-I k-1 Ju'l

The forcing function fi(t) is assumed to be represented by a product

of a well-defined envelope function A(t) and the uncorrelated stationary

random process ni(t) with zero mean, that is,

fi(t) - Ai(t)ni(t) (3-4)

E[ni(t)] - 0 (3-5)

E[ni(t)nJ(01 - 0 . (3-6)

Furthermore it is assumed that ni(t) has a power spectral density 41(N)

which is a smooth function of w, having no sharp peaks. The stationary

response of the system of Eq. (3-1) to uncorrleated white random processe

has been studied by Caughey [7). We are to determine the approximate mea

I ~ sqioare response Eyi(t)] subject to the assumptions given in Eqs. (3-4) th

(3-6) by equivalent linearization tocitnique. The euvelope functions A4(t
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considered in this Chapter are the unit step function and the exponentia'

function, I.e.,

A(t) - ut) (3-7)

A (t) - AeCit (3-8)

3.2 Response Formulation

Let us assume that an approximate solution to Eq. (3-1) can be

obtained from the lnearzed equation

f( (3-9)

where Iis the equivalent linear daping coefficient and is the

equivalent linear stiffness. Then the error caused by this linearizatioi

is obtained from

e•(t) - 2(at-e)Yi+(2t-) Ot (3-10)

where
N N 2222 (3-11)

Minimizing E~e2 ] with respect to Oje and wie" we obtain

Z i][yEy ay] E Yy]Ey 1 (a3y)]

.E2 [y 1 )E ]-(E[yiyJ) (3-12)

'-1 ly

E~9i
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It is easy to show that the conditions given by Eqs. (3-12) and (3-13)

vield the true minimum of E[e] if we apply the same argument used in

Chapter 2.2.

In order to express the right hand side of Eqs. (3-12) and (3-13)

in tems of the mean-square of the displacement and the velocity, we

must know the Joint probability density funct'an P(Y1, Y2 , ""jYN" l

Y2 .... N). Since the inputs fi(t) are Gaussian and the nonlinearites

of the system are assumed to be small, the outputs of the linearized

system are also assumed to be Gaussian. The displacement and the

velocity of the i-th mode are:

y a(t) - hi(t-T)fi(T)d (3-14)
0

h1(t.t)
;,i(t) " at fl(T)dT3-0

where

hi(t) e (sinwidt)u(t) (3-16)
(41 d

2 2 2
wid ' wie-Oie (3-17)

EI ]J J hi(t-T)EYi(T)]dT 0 (3-18)

0

Similarly,

Eoj11 -0 (3-19)
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Next, let us find the covariances E~yi(t)y.1(t)J and yItyj)1

E~y1(tlryj(t)J f Iftorj(t-r)h j(t..r)E~f1 (T)fj(r)]dTd;t (3-20)

since fi(t) and fj(t) are uncorrelated, for 1p J, i.e.,

it is concluded that

ELy 1(t)yj(t)J - 0 1 $1(3-22)

Similarly, we can show that

(3-23)I The displacemients and velocities between different modes are tiutually
wcorrelated. Therefore, the covariance matrix becow.s:

EIyjl E02 ..... 0 0

j0 0 E~ ] Ey0 0

I E[2 0 0 .

0 0 0 0 ..... E~y ]E~J

(3-24)
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For the covariance matrix expressed by Eq. (3-.24), the 2N-fold

probability density function is given by

N
P(YlY2...YNY2...N) "k]1 P k(kYik) (3-25)

where Pk(Yk,.k) is the probability density function associated with

the k-th mode defined by

pk(.Ykl k) , -- ep1kilk -kcy)(-6
2w/det Kk) (-)

det(Kk) -E~y 2JE~ij]-(E~y~.kJ )2

k k

ELYki'k

bk u (3-27)

Ek L" ((l

Using Eqs. (3-25) and (3-26)9 E(yI -A Ely .U] can be evaluated as

~k-1

rN-fold

S2 N 2 2 2
sW 1E~y 1) E w EyJ+3 E~yJ1)

kfl

22 2 2 2-2

W1E[yj] ( Z kElykJ+2i,-lyi])

k-1 (3-28)
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Similarly,

i 1  i .. .. J . ,_..U.E ay a I ...- • CPk'yk'ik)dykd~k

24-fold

w1~yI1  + y 2.2) (3-201)
k I

Substituting Eqs. ()-28) and (3-29) into Eqs. (3-12) and (3-13), we

obtain,

201e = 2c1w1  (3-30)

ile . ki

2 2[1Nu 22 2 (231
kai

These results are the same as the equivalert linear diAping and

stiffness for the stationary processes.

In this Chapter, the mean-square response is formulated by usv

of Eq. (2-40). The man-souare response of the i-th mode is given by,

EL • 2. 1- , xp {-cjwjC2t-T-- )$tinw d(t-T) x

o wid 00

Sirw d(t- )At (T)At (T)COSW(T-)ddTk (3-32)

whe:' is defined by Eqs. (3-17). Now by substitution of Eqs. (3-30)

and (3-31) i o -q. (3-17), 1d is expressed as follows:
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2 U 2 [IC2 + ( 2C2] 2E 2 3(3-33
'O1d wif-i~ i( kE 'kE[kJ +

3.2.1 Unit Step Envelope Function

Substituting Eq. (3-7) into Eq. (3-32) and integrating, Eq. (3-32)

reduces to

E[y2] - i(w),Hilwll2Ktl~o,t)dw (3-34)

0

where -2i;tt -2€ 1 t 2

K1(wt) - l+0 (1+ Ct- -  sin2sndt)+e sxn tdt
wid

2 2 2.2

( w -  ., )-2e ' tt(coswidt+ snidt) x
Wid Wjd

2e-Siwft tsifltcoswt- s i n (3-35)
WId

1H i(w)I 2 2 (3-36)

Since *1(w) has been assumed to be a smooth function of w, having no

I sharp peaks, and if ;t is small, then the integral of Eq. (3-34) can

be evaluated approximtely by [1]:

2 i(Wie) -2yiWt 21d1  2 if2Ey2]% - (-e (1+ - sin (idt+ 7L sin2widt)]

I" (3-37)
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If *i() is given and Eqs. (3-31) and (3-33) are substituted into

Eq. (3-37), we have N simultaneous nonlinear algebraic equations for

2ELYJ (1 - 1, 2,...., N). These can be solved numerically by the

Newton-Raphson method.

Now consider the particular case in which ni(t) is white noise.

If we denote *1 (w) = constant - K, Eq. (3-34) becomes

22ciKit  . 2 2 W
E[y 1  AK [l-e (Io sin Widt+ _i slnwid t)]2 id i4iwiw e wid i

(3-38)

Let us now show that the transient mean-square response Ey] does

not exceed the stationary mean-square response E(y] s if ni(t) is white

noise. The stationary mean-square response is obtained by letting t .

E[yJ2] . Ai y 2 (3-39)

Substitutina Eq. (3-31) into Eq. (3-39), we find:

N
E[] s {1+P E 4[y2]s+2 2E[ yis)} - 4rwlK? 0 (3-40)

k-1 4r.1w1i

Using Eq. (2-47), we have the following inequality:

4¢iw 2 ~e (3-41)

Substituting Eq. (3-31) into Eq. (3-41) and rearranging the teris we

obtain



~33
3.33)

El l 2(£WE[Yk]+2iE[Yi])} - 7rK (3-42)
iE y) l (k=lz4 -

After eliminating wK/4yiw from Eqs. (3-40) and (3-42) and after some

manipulation,

22 N 2 2 2 N 2 2
(E-v']-E[YiJs){l+2p[k z k(E[yk]+E[ykls)] + p E wk EYkl <

2 N 2 2E[y] s { W Wk(E[Yks .yk) (3-43)k=l

Suppose

E[y ) 2? E [Y2] (3-44)

Equation (3-44) implies

N 2k(Eryk]-E 2Yk ) a 0 (3-45)

k-l

Then the right hand side of the inequality (3-43) is negative so the

left hand side must be negative, too.

(EL J-Ey4]) < 0

This is a contradiction of Eq. (3-44).

Hence,

E[Y2] . E[. (3-46)

Thus, it has been proven that if ni(t) is white noise and the envelope

function is the unit step function, then the transient mean-square

response does not exceed the stationary mean-square response.
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3.2.2 Exponential Envelope Function

For the exponential envelope function A.(t) e= c ~t, Eq. (3-32)

now becomes, after double integration,

ELv.2(01] = iwJ (3-47)
1 J iwIiA(w)12Wi(w~t)dw

0

where
2 2 2

W (w,t) = e-2cil;I+ I le.dcA

''i d

wi d

Xt)= e- it(l+ IS& )

X2(t) = e- i sn 2 O'dt (3-48)

X3t . -2 i(cosaW t+ -i sinw iid wid lt

Y4 t) 1sinwid t

r1= y1w-c1

IHIA(w)I 2 2 2_ 2 22(Wid +jr W ) +(2riw)2
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If c1 is either the same order of magnitude as r w or smaller, then
i

the integration of Eq. (3-47) may be approximated by the following

expression:

24r -irI Eyt (  d+ri) e-2 Ctt

r1 (o Zd+ri

I2
r 2r t r ir[1-e 1 (1+ i nw tidt+2  Ysin dt)] (3-49)

wid wid

Letting c1 -, 0, Eq. (3-49) reduces to Eq. (3-38).

I.
I!*
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CHAPTER IV

CONCLUSIONS

In Chapter II, the time varying mean-square response of a non-

linear single-degree-of-freedom mechanical system to nonstationary

random excitation characterized by the product of an envelope function

and a stationary Gaussian random process has been considered. A unit

step envelope function and an exponential envelope function are consi-

6ered in conjunction with both correlated and white noise with zero

mean. The nonlinear governing equation was linearized by the method of

equivalent linearization.

For the nonstationary process, it has been shown that the equi-

valent linear damping coefficient and the equivalent linear stiffness

for the system with nonlinearities involved only in displacements or

only in velocities are the same as those for the stationary process.

The. mean-square response depends upon the coefficients of the

system equation, the shape of the envelope function, and the parameters

of the autocorrelation of the process n(t). It was proved that for

white noise modulated by a unit step function, the transient ea-square

response never exceeds the stationary response. However, the mean-square

response to correlated noise modulates by a unit step function may

exceed its stationary value, especially when the power spectral density

of the process n(t) has a sharp peak, and its maximun, value becomes

several times the stationary value.

I ' .



[37]

It has also been shown that the mean-square response of the

system with cubic hardening spring-type nonlinearity my be greater

than the corresponding linear system response under certain conditions.

In Chapter III, the analysis has been extended to the N-degree-of-

freedom nonlinear system for the case of mutually unacorrelated noise.

I
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NOMENCLATURE

A(t) = envelope function

A1  z constants of the exponential envelope function

a,b,c - functions of the correlation function E[y 2], E[yy],
and ED 2J defined by Eq. (2-29).

ct  - decay coefficients of the exponential envelope function.

Co  = normalization factor

E[ - expected value of [ ].

Ely2]  - time varying mean-square response

E[y2 - tim varyng man-square response of the linear system.
E[y 2 = stationary mean-square response of the linear system

r0 s
E [Y2] s stationary mean-square response of the nonlinear system

e = difference between a nonlinear system and its equivalent
linear system

h(T) = impulse response function or weighting function of the
equivalent linear system

H(w) - transfer function of the equivalent linear system

det(K) = determinant of the correlation matrix

Ke = constant

K(W,t) = modulation function due to unit step function

n(t) = input ranaom process

p(y,y) = probability density function

= autocorrelatlon function of input noise n(t)

I V.t timeLI'
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u(t) - unit step function

W1 (w,t) a modulation function due to exponential envelope function

y(t) * displacement response

a * decay coefficient of noise correlation function

* frequency of noise correlation function

Be - equivalent linear damping

6(t) - Dirac delta function

Ak(t) a functions defined by Eq. (3-48). k - 1,2,...04

Xii - constants defined by Eq. (2-52)

jk - coefficients of the nonlinear term of y(t)

4 - system damping coefficient

wn a circular natural frequency of the corresponding linear
system

w2 e equivalent linear stiffnessne

2 2 _ 2wdne - Be

) power spectral density of input noise n(t)

(*) - d( )/dt

* product

T wt

- sumation

, approximately equal to
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APPENDIX

Computation of E[YY 2* and Eb, Jn2

E.i2m41 i7ydt(mj*Jh 'exp(-ay2+2byj-cj2)d~dy

JJYxp (CY2) 2jY) (

2w~det(K)]*lol 
ai

b2-2  m(2u~lh-1i2v a )vi-2vx exp(q E V1 2 (1)
vo0 4b

where

and

* 2mf-IO 1 I1J b2

Ei~dyy)] ~ a a

E __ mv V 1 (2)
£ o0(U-V)!V (i C, ,T

where

* a (ac-b 2 )/a
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Noting that

m -V IV I m- a -- a)m

V-0 be b

Eq. (2) reduces to

2%1

2m+2 I 2a*2 _&2 **2

Ely > 21r~det(K)]f Jy exp(- +2yycy )dyd;

1 JexpI:(-c+ b)2 y~~,
2wrdet(K)]f

-00

m yir ;1;,A a *--2vd;
V:O 4b7

(l2])"f1 (2.41)1
2 ml (4)
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